Solution of Linear Programming Problems

IMPORTANT

Solution of Linear Programming Problems: Overview

This topic covers concepts such as Optimisation Problem, Solutions of a Linear Programming Problem, Graphical Method of Solving Linear Programming Problems, and Feasible Region of a Linear Programming Problem.

Important Questions on Solution of Linear Programming Problems

EASY
IMPORTANT

The feasible region in LPP is always

HARD
IMPORTANT

What are conflicting constraints. Show that the LPP in which the objective function z=6x+4y is to be minimized subject to the constraints 3x+2y18 and 2x+y16 x0, y0 has infinitely many optimal solutions.

HARD
IMPORTANT

What are conflicting constraints. 

Show that the LPP of which two constraints are 3x-5y7 and 10y9+6x has no optimal solution.

MEDIUM
IMPORTANT

What are conflicting constraints. Show that if each of the infinitely many optimal solutions of an LPP with objective function z=ax+by, lies on the line 15 x+25 y=32 with 5a=3b.

MEDIUM
IMPORTANT

What are conflicting constraints. Find optimal solution of the following LPP, Maximize z=2x+3y subject to 5x+4y20, where x0, y0.

MEDIUM
IMPORTANT

What are conflicting constraints. 

Show that the optimal solution of the following LPP

Maximize z=5x+3y

Subject to, x+2y16,

0y3,

x0

lies on the straight line 2x+5y=32.

HARD
IMPORTANT

Solve z=2x+3y, subject to x+y62x+y16x0y0 graphically. Check whether it has feasible or infeasible solution.

HARD
IMPORTANT

Solve z=3x+2y, subject to x+y52x+y20x0y0 graphically. Check whether it has feasible or infeasible solution.

HARD
IMPORTANT

Solve z=2x+2y, subject to x+y5x+2y14x0y0 graphically. Check whether it has feasible or infeasible solution.

HARD
IMPORTANT

Solve z=x+2y, subject to x+y53x+y21x0y0 graphically. Check whether it has feasible or infeasible solution.

HARD
IMPORTANT

Solve z=4x+3y, subject to x+y62x+y20x0y0 graphically. Check whether it has feasible or infeasible solution.

MEDIUM
IMPORTANT

Check if z=4x+3y, subject to x+y62x+y20x0y0 has feasible or infeasible solution graphically.

MEDIUM
IMPORTANT

If 1x2 and 1y3 then least possible value of 2y-3x is

HARD
IMPORTANT

Solution of the LPP Min. Z=5x+10y subject to: x+2y120, x+y60, x-2y0, x, y0 is

EASY
IMPORTANT

The coordinates of the corner points of the bounded feasible region are (10,0),(2,4),(1,5) and (0,8). the maximum of objective function z=60x+10y is.

HARD
IMPORTANT

For the following linear programming problem, find the minimum value of z=8000x+12000y,  where constraints are 

3x+4y60

x+3y30

x0, Y0

EASY
IMPORTANT

The region of feasible solution under the constraints 2x+y6, x0, y0 is:

HARD
IMPORTANT

Solve the following problem graphically :

Minimise and Maximise

Z=3x+9y

Subject to the constraints :

x+3y60

x+y10

xy

x0, y0.

HARD
IMPORTANT

For the following linear programming problem:

Objective function: z=150x+250y

Subject to: 4x+y40

3x+2y60

x0

y0

The maximum value of z is

MEDIUM
IMPORTANT

For the following linear programming problem.

x+2y20, 3x+2y30, x0, y0 and z=20x+30y.